skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Alawad, Nour"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Most of the current public health surveillance methods used in epidemiological studies to identify hotspots of diseases assume that the regional disease case counts are independently distributed and they lack the ability of adjusting for confounding covariates. This article proposes a new approach that uses a simultaneous autoregressive (SAR) model, a popular spatial regression approach, within the classical space‐time cumulative sum (CUSUM) framework for detecting changes in the spatial distribution of count data while accounting for risk factors and spatial correlation. We develop expressions for the likelihood ratio test monitoring statistics based on a SAR model with covariates, leading to the proposed space‐time CUSUM test statistic. The effectiveness of the proposed monitoring approach in detecting and identifying step shifts is studied by simulation of various shift scenarios in regional counts. A case study for monitoring regional COVID‐19 infection counts while adjusting for social vulnerability, often correlated with a community's susceptibility towards disease infection, is presented to illustrate the application of the proposed methodology in public health surveillance. 
    more » « less